Cart (Loading....) | Create Account
Close category search window
 

Quenching of He-induced intensity enhancement effect in H and D emission produced by Nd-doped yttrium aluminum garnet laser irradiation on solid targets in low pressure helium gas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kurniawan, Koo Hendrik ; Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630, Indonesia ; Lie, Tjung Jie ; Suliyanti, Maria Margaretha ; Pardede, Marincan
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3058670 

An experimental study was performed on the N2-induced quenching of He-induced intensity enhancement effect in reduced-pressure plasma emission produced by Nd-YAG irradiation on solid zircaloy and porous fossil samples. The spatial distributions and temporal variations in the emission intensities show pronounced intensity quenching effects on the He I 667.9 nm, H I 656.2 nm, and D I 656.1 nm emission lines in both samples when a tiny amount (5% by volume) of nitrogen was added to helium gas, while leaving the spatial and temporal intensity profiles of the heavier Zr and Ca atoms virtually unaffected. In both cases of different ambient gases, the spatial and temporal variations in the He, H, and D emission intensities exhibit distinct features and changes, which are clearly distinguishable from those observed on the Zr and Ca emission lines, which were mainly produced by the shock-wave induced thermal excitation process. The analysis of these data unambiguously revealed the presence of an additional and distinct “He-assisted” excitation mechanism in the He plasma, which was further suggested to be related to the He metastable excited state. The quenching effect was therefore explained as a consequence of energy depletion of the He metastable excited state triggered by the Penning ionization process induced by the presence of nitrogen. This also explains the relatively insensitive response of the Zr and Ca emission intensity profiles to nitrogen addition despite the increased plasma electron density resulting from the ionization process.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 1 )

Date of Publication:

Jan 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.