By Topic

A two-dimensional lattice ion trap for quantum simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Clark, Robert J. ; Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ; Lin, Tongyan ; Brown, Kenneth R. ; Chuang, I.L.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3056227 

Quantum simulations of spin systems could enable the solution of problems that otherwise require infeasible classical resources. Such a simulation may be implemented using a well-controlled system of effective spins, such as a two-dimensional lattice of locally interacting ions. We propose here a layered planar rf trap design that can be used to create arbitrary two-dimensional lattices of ions. The design also leads naturally to ease of microfabrication. As a first experimental demonstration, we confine 88Sr+ ions in a millimeter-scale lattice trap and verify numerical models of the trap by measuring the motional frequencies. We also confine 440 nm diameter charged microspheres and observe ion-ion repulsion between ions in neighboring lattice sites. Our design, when scaled to smaller ion-ion distances, is appropriate for quantum simulation schemes, e.g., that of Porras and Cirac [Phys. Rev. Lett. 92, 207901 (2004)]. We note, however, that in practical realizations of the trap, an increase in the secular frequency with decreasing ion spacing may make a coupling rate that is large relative to the decoherence rate in such a trap difficult to achieve.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 1 )