By Topic

Magnetic properties of macroscopic colloid crystals of silica-coated FePt nanoparticles with controllable interstices for molecular separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lo, Chester C.H. ; Center for NDE, Iowa State University, 285 ASCII, Ames, Iowa 50011, USA ; Tsang, Shik Chi ; Yu, Chih H. ; Tam, Kin

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This paper reports on the magnetic properties of macroscopic colloidal crystals comprising silica-encapsulated FePt nanoparticles which assembled into three dimensional regular arrays by magnetic crystallization. The crystals have potential for magnetic separation of paramagnetic chemical or biochemical entities (e.g., proteins) by providing local magnetic fields at the interstitial sites to promote magnetic retention of the entities of interest. Structural characterizations by transmission electron microscopy and small angle x-ray scattering using a synchrotron source indicate a hcp arrangement of the nanoparticles in the colloidal crystals. The crystals have a large surface area (110.6 m2g-1) and a sharp pore size of 15 nm which is adjustable by controlling the silica shell thickness. Under applied fields, the colloidal crystals display substantially stronger magnetic responses than the unaligned particle assembly, thus favoring removal of the colloidal crystals from the mixture by magnetic means after magnetic separation. The potential of the colloidal crystals for separating paramagnetic biological or chemical species is demonstrated in absorption experiments using two proteins with and without a paramagnetic center.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 7 )