Cart (Loading....) | Create Account
Close category search window
 

Measurement of urinary calcium using AT89C51RD2 microcontroller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Neelamegam, P. ; Department of Electronics and Instrumentation Engineering, SASTRA University, Thanjavur 613 402, Tamil Nadu, India ; Jamaludeen, A. ; Rajendran, A. ; Raghunathan, R.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3115211 

A simple and inexpensive absorption technique for determination of calcium ion in urine samples is developed, comprising a light emitting diode (650 nm) as the light source and photodiode as the detector with AT89C51RD2 microcontroller. The design of the system and details of interface, calibration, and procedure of operation are explained in this paper. Software is developed to monitor sample processing and to display the results in liquid crystal display screen. With 15 μl sample volume, a linear output is obtained in the range of 2.5–7.5 mM calcium with a detection limit of 0.06 mM. Interferences from other cations such as monovalent ion and divalent ion are investigated in the expected range, which are normally present in clinical samples, and absorption changes over the pH range of 3–12 are also determined. This system has been demonstrated successfully for the successive assay of calcium in urine samples, with the results comparing well to those achieved and in good agreement with values obtained with the current clinical spectrophotometric method at 95% of confidence level.

Published in:

Review of Scientific Instruments  (Volume:80 ,  Issue: 4 )

Date of Publication:

Apr 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.