By Topic

Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Goh, S.H. ; Centre for Integrated Circuit Failure Analysis and Reliability, National University of Singapore, Singapore ; Sheppard, C.J.R. ; Quah, A.C.T. ; Chua, C.M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

With fast scaling and advancement of integrated circuit (IC) technology, circuitries have become smaller and denser. New materials and more sophisticated designs have evolved. These changes reduced the effectiveness of conventional laser induced fault localization techniques. Since IC fault localization is the most critical step in failure analysis, there are strong motivations to improve both spatial resolution and sensitivity of such systems to meet the new challenges from advanced technology. Refractive solid immersion lens (RSIL) is well known to enhance the laser spot size which directly affects resolution and sensitivity in back side fault localizations. In practice, it is difficult to operate RSIL at the ideal configurations to obtain the smallest spot resolution. It is necessary to understand the resolution performance at the other design focal planes. Besides resolution, there are also other factors that affect sensitivity in a RSIL enhanced system. This paper identifies and characterizes key RSIL design parameters to optimize RSIL performance on laser induced techniques. We report that the most efficient conditions are achieved close to aplanatic RSIL design to within 20–25 μm (for a 1 mm diameter lens), and the backing objective should be the minimum numerical aperture required for optimum resolution performance. The size of the mechanical clear aperture opening should be large enough (≫80%) to exploit the advantage of aplanatic RSIL. RSIL is developed on a laser scanning optical microscope in this work, and a resolution of 0.3 μm (for a wavelength of 1340 nm) was achieved over a range of operating conditions. A quantitative resolution of 0.25 μm is achieved and a pitch structure of 0.4 μm is easily resolvable. Close to 15 times- enhancement in laser induced signal is obtained.

Published in:

Review of Scientific Instruments  (Volume:80 ,  Issue: 1 )