By Topic

Development of microfluidic device and system for breast cancer cell fluorescence detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
He, J.H. ; Institute of Microelectronics, 11 Science Park Road, Singapore 117685, Singapore ; Reboud, J. ; Ji, H.M. ; Lee, C.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.3049529 

A biomicrofluidic device and a compact cellular testing system were developed to be used in cancer diagnostics. The device was fabricated by lithography-based microfabrication techniques, followed by two-step etching of deep reactive ion etching, and channels were formed by anodic bonding of Si and Pyrex. The device is based on the capture of cells inside a new meandering weir-type filter design, followed by detection and characterization using specific fluorescent labeling. Breast cancer cells MCF-7 and control cells MCF-10A were flowed through the microfluidic channels, and captured by meandering weir-type filters. 17β-Estradiaol(E2)-BSA (bovine serum albumin)-FITC (fluorescein isothiocyanate) macromolecular complex was found to selectively label MCF-7, potentially serving as a cancer cell detection marker. MCF-7 cells were detected with specific and strong FITC signals after only 4 min of contact with the stain. The signals were about seven times stronger than that of a labeling performed on conventional glass slides. These results strongly suggest that this novel design has a potential application to detect cancer cells or other diseased cells without compromising the advantage of high sensitivity of the microfluidic approach.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:27 ,  Issue: 3 )