By Topic

Development of a fine tool servo with force monitoring system for nanomachining applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gan, S.W. ; Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 ; Rahman, M. ; Lim, H.S.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The strong demand for ultraprecision components in today’s industries has gradually delivered focus in the research area of diamond turning. A new technique called tool servosystem, an auxiliary servoaxis of the lathe, has become the best solution in machining the ultraprecision surfaces more effectively. This article presents a newly developed piezoelectric-based fine tool servo (FTS) system for a miniature ultraprecision lathe. The FTS system is specially designed by installing a small-size and high sensitivity force transducer which measures the thrust force along the in-feed direction during diamond turning, and also detects the initial contact point of tool/workpiece. A new flexure mechanism of the FTS is presented which is built to measure the cutting force and guide the piezoelectric actuator movement. By employing this flexure mechanism, the cutting force can be measured accurately without sacrificing the desired displacement of the cutting tool during turning process. In order to achieve the optimized tracking performance, the FTS system is controlled by the proportional-integral-derivative feedback and feedforward algorithm that is available with the motion controller. The nonferrous workpiece materials such as aluminum alloys and brass have been machined in this study to investigate the performance characteristics of the developed FTS system. In addition, an example of a nanosurface with microfeatures has been machined and thereby successfully verified the capability of the FTS system. The results show a significant improvement in the surface finish of the machined workpiece and also confirm that this system can successfully generate nanosurfaces effectively.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:27 ,  Issue: 3 )