Cart (Loading....) | Create Account
Close category search window
 

Carrier backscattering characteristics of nanoscale strained complementary metal-oxide-semiconductor devices featuring the optimal stress engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chang, Shu-Tong ; Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan, Republic of China ; Ming-Han Liao ; Chang-Chun Lee ; Huang, J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.3125275 

The authors present stress distribution simulation characterization of the three-dimensional boundary effects and show how these effects can impact the achievable transistor performance gain. The high-performance complementary metal-oxide-semiconductor (CMOS) device has been achieved by stressors such as contact etch stop layer (CESL) and SiGe S/D and optimal geometric structure design. The biaxial-like stress distribution resulting from symmetry structure and uniaxial-like stress distribution resulting from asymmetry structure seems to be promising when considering drive current enhancement, the ballistic efficiency, and carrier injection velocity for CMOS devices. The comprehensive study helps the future nanoscale CMOS device design and demonstrates that the stress enhancement factors remain valid for future technology.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:27 ,  Issue: 3 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.