By Topic

Metamaterials in the Terahertz Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Withawat Withayachumnankul ; Dept. of Inf. Eng., King Mongkut's Inst. of Technol. Ladkrabang, Bangkok, Thailand ; Derek Abbott

Metamaterials are artificial composites that acquire their electromagnetic properties from embedded subwavelength metallic structures. In theory, the effective electromagnetic properties of metamaterials at any frequency can be engineered to take on arbitrary values, including those not appearing in nature. As a result, this new class of materials can dramatically add a degree of freedom to the control of electromagnetic waves. The emergence of metamaterials fortunately coincides with the intense emerging interest in terahertz radiation (T-rays), for which efficient forms of electromagnetic manipulation are sought. Considering the scarcity of naturally existing materials that can control terahertz, metamaterials become ideal substitutes that promise advances in terahertz research. Ultimately, terahertz metamaterials will lead to scientific and technological advantages in a number of areas. This article covers the principles of metamaterials and reviews the latest trends in terahertz metamaterial research from the fabrication and characterization to the implementation.

Published in:

IEEE Photonics Journal  (Volume:1 ,  Issue: 2 )