By Topic

Crystal structure and electronic and thermal properties of TbFeAsO0.85

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Kaurav, N. ; Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan ; Chung, Y.T. ; Kuo, Y.K. ; Liu, R.S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3136764 

The crystal structure and the electronic and thermal properties of a high-quality polycrystalline TbFeAsO0.85 sample made by a high-pressure technique are investigated. The crystal structure, as determined by synchrotron X-ray powder diffraction, possesses a tetragonal unit cell (space group: P4/nmm) with lattice parameters of a=b=3.8851 Å and c=8.3630 Å. In order to elucidate the electronic structure and oxidation states of corresponding elements, X-ray absorption near-edge structure (XANES) spectra are presented. The XANES spectra confirm that the oxidation states of Fe, As, and Tb in the TbFeAsO0.85 sample are Fe2+, As3-, and Tb3+, respectively, which are consistent with the previously reported band structure calculations. The n-type character of the charge carriers as revealed from XANES spectra is corroborated by the negative sign of the Seebeck coefficient (S) in the present study. The heat capacity (CP) measurement shows an anomaly in the vicinity of the superconducting transition temperature (Tc=42.5 K), which confirms the bulk nature of the superconductivity in this material.

Published in:

Applied Physics Letters  (Volume:94 ,  Issue: 19 )