Cart (Loading....) | Create Account
Close category search window
 

50-nm Metamorphic High-Electron-Mobility Transistors With High Gain and High Breakdown Voltages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Dong Xu, ; Microelectron. Center, Electron., Intell. & Support, BAE Syst., Nashua, NH, USA ; Kong, W.M.T. ; Xiaoping Yang ; Mohnkern, L.
more authors

We report the design, fabrication, and characterization of ultrahigh-gain metamorphic high-electron-mobility transistors (MHEMTs) with significantly enhanced breakdown performance. In this letter, an asymmetrically recessed 50-nm Gamma-gate process has been successfully applied to epitaxial designs with double-sided-doped InAs-layer-inserted channels grown on GaAs substrates. The critical gate recess width has been optimized for device performance, including transconductance, breakdown voltage, and gain. The employment of a device passivation process greatly minimizes the adverse impacts that the aggressive vertical and lateral scaling would have introduced for pursuing enhanced performance. As a result, we have achieved 1.9-S/mm transconductance and 800-mA/mm maximum drain current at a drain bias of 1 V, 9-V off-state breakdown voltage, approximately 3.5-V on-state breakdown voltage, and 14.2-dB maximum stable gain at 110 GHz. To our knowledge, this is a record combination of gain and breakdown performance reported for microwave and millimeter-wave HEMTs, making these devices excellent candidates for ultrahigh-frequency power applications.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 8 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.