By Topic

Real-Time Modeling of Wheel-Rail Contact Laws with System-On-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongji Zhou ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, Leeds, UK ; Mei, T.X. ; Freear, S.

This paper presents the development and implementation of a multiprocessor system-on-chip solution for fast and real-time simulations of complex and nonlinear wheel-rail contact mechanics. There are two main significances in this paper. First, the wheel-rail contact laws (including Hertz and Fastsim algorithms), which are widely used in the study of railway vehicle dynamics, are restructured for improved suitability that can take advantage of the rapid developing multiprocessor technology. Second, the complex algorithms for the contact laws are successfully implemented on a medium-sized Field-Programmable Gate Array (FPGA) device using six NiosII processors, where the executions of the Hertz and Fastsim parts are pipelined to achieve further enhancement in multiple contacts and the operation scheduling is optimized. In the Fastsim part, the floating point units with buffering mechanism are efficiently shared by five processors connected in a token ring topology. The FPGA design shows good flexibility in utilizing logic element and on-chip memory resource on the device and scalability for a significant speed up on a larger device in future work.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 5 )