By Topic

Numerical Simulation of the 2-D Gas Flow Modified by the Action of Charged Fine Particles in a Single-Wire ESP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kazimierz Adamiak ; Department of Electrical and Computer Engineering, University of Western Ontario ; Pierre Atten

A numerical model for simulating precipitation of submicrometer particles in a singlewire electrostatic precipitator is discussed in this paper. It includes all important phenomena affecting the process: electric field, space charge density, gas flow, including the secondary electrohydrodynamic flow caused by the corona discharge and charged particles, and particle transport. A simplified corona model assumes just one ionic species and neglects the ionization zone. The fully coupled model for the secondary EHD flow, considering the ion convection, has been implemented. The dust particles are charged by ionic bombardment and diffusion. The gas flow pattern is significantly modified by the secondary EHD flow, which depends on the particle concentration. As for fine particles the drift velocity is small and particles practically follow the gas streamlines, the particle concentration has a very strong effect on the precipitation efficiency.

Published in:

IEEE Transactions on Dielectrics and Electrical Insulation  (Volume:16 ,  Issue: 3 )