By Topic

Optimal dynamic virtual path bandwidth allocation and restoration in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gersht, A. ; GTE Labs. Inc., Waltham, MA, USA ; Shulman, A.

This paper presents an optimal dynamic virtual path (VP) bandwidth allocation and restoration scheme for mesh ATM networks (in the context of the layered traffic control architecture). The scheme integrates the dynamics of demand admission, VP bandwidth allocation, and logical spare capacity assignment for maximizing network throughput while ensuring full traffic restorability. We present an optimal parallel algorithm that minimizes the total rejected bandwidth demand and cell loss while satisfying the maximal cell loss, delay, and 100% restorability requirements for a given set of failure scenarios. The optimal spare capacity assignment in the presented approach follows directly from the network admission and bandwidth allocation decisions. The algorithm also equalizes cell losses on the VPs thus providing cell-level fairness

Published in:

Global Telecommunications Conference, 1994. GLOBECOM '94. Communications: The Global Bridge., IEEE  (Volume:2 )

Date of Conference:

28 Nov- 2 Dec 1994