By Topic

Molecular Motion in Some Glassy Polymers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Slichter, W.P. ; Bell Telephone Laboratories, Inc., Murray Hill, New Jersey ; Mandell, Elaine R.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1734984 

Molecular motion in several glassy polymers has been examined by proton resonance methods in the temperature range 77–425°K, and has been interpreted in terms of the detailed behavior of molecular chains and substituents. Comparisons are made between transitions seen by proton resonance and glass transitions seen by other methods. Powles' observations on poly(methyl methacrylate) are qualitatively borne out. The influence of thermal history and polymerization conditions is considered. Motion has been examined also in several polymeric methacrylates, including the ethyl, n‐butyl, isobutyl, n‐hexyl, n‐octyl, lauryl. docosyl, and cyclohexyl esters. Some details of molecular configuration are considered for the ethyl ester. In poly(methyl alpha‐chloroacrylate) the low‐temperature values of the second moment are much smaller than expected. These depressed values are ascribed to rotation of all of the methyl groups about the threefold axis.

Published in:

Journal of Applied Physics  (Volume:30 ,  Issue: 10 )