Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Viewing geometric protein structures from inside a CAVE

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Akkiraju, N. ; Illinois Univ., Urbana, IL, USA ; Edelsbrunner, H. ; Ping Fu ; Jiang Qian

We have developed general modeling software for a Cave Automatic Virtual Environment (CAVE); one of its applications is modeling 3D protein structures, generating both outside-in and inside-out views of geometric models. An advantage of the CAVE over other virtual environments is that multiple viewers can observe the same scene at the same time and place. Our software is scalable-from high-end virtual environments such as the CAVE, to mid-range immersive desktop systems, down to low-end graphics workstations. In the current configuration, a parallel Silicon Graphics Power Challenge supercomputer architecture performs the computationally intensive construction of surface patches remotely, and sends the results through the I-WAY (Information Wide Area Year) using VBNS (Very-high-Bandwidth Network Systems) to the graphics machines that drive the CAVE and our graphics visualization software, Valvis (Virtual ALpha shapes VISualizer)

Published in:

Computer Graphics and Applications, IEEE  (Volume:16 ,  Issue: 4 )