By Topic

The importance of ray pathlengths when measuring objects in maximum intensity projection images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schreiner, S. ; Dept. of Biomed. Eng., Vanderbilt Univ., Nashville, TN, USA ; Dawant, B.M. ; Paschal, C.B. ; Galloway, R.L.

It is important to understand any process that affects medical data. Once the data have changed from the original form, one must consider the possibility that the information contained in the data has also changed. In general, false negative and false positive diagnoses caused by this post-processing must be minimized. Medical imaging is one area in which post-processing is commonly performed, but there is often little or no discussion of how these algorithms affect the data. This study uncovers some interesting properties of maximum intensity projection (MIP) algorithms which are commonly used in the post-processing of magnetic resonance (MR) and computed tomography (CT) angiographic data. The appearance of the width of vessels and the extent of malformations such as aneurysms is of interest to clinicians. This study will show how MIP algorithms interact with the shape of the object being projected. MIP's can make objects appear thinner in the projection than in the original data set and also alter the shape of the profile of the object seen in the original data. These effects have consequences for width-measuring algorithms which will be discussed. Each projected intensity is dependent upon the pathlength of the ray from which the projected pixel arises. The morphology (shape and intensity profile) of an object will change the pathlength that each ray experiences. This is termed the pathlength effect. In order to demonstrate the pathlength effect, simple computer models of an imaged vessel were created. Additionally, a static MR phantom verified that the derived equation for the projection-plane probability density function (pdf) predicts the projection-plane intensities well (R2=0.96). Finally, examples of projections through in vivo MR angiography and CT angiography data are presented

Published in:

Medical Imaging, IEEE Transactions on  (Volume:15 ,  Issue: 4 )