By Topic

Accurate localization of cortical convolutions in MR brain images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yaorong Ge ; Dept. of Math & Comput. Sci., Wake Forest Univ., Winston-Salem, NC, USA ; Fitzpatrick, J.M. ; Dawant, B.M. ; Bao, J.
more authors

Analysis of brain images often requires accurate localization of cortical convolutions. Although magnetic resonance (MR) brain images offer sufficient resolution for identifying convolutions in theory, the nature of tomographic imaging prevents clear definition of convolutions in individual slices. Existing methods for solving this problem rely on heuristic adaptation of brain atlases created from a small number of individuals. These methods do not usually provide high accuracy because of large biological variations among individuals. The authors propose to localize convolutions by linking realistic visualizations of the cortical surface with the original image volume. They have developed a system so that a user can quickly localize key convolutions in several visualizations of an entire brain surface. Because of the links between the visualizations and the original volume, these convolutions are simultaneously localized in the original image slices. In the process of the authors' development, they have implemented a fast and easy method for visualizing cortical surfaces in MR images, thereby making their scheme usable in practical applications

Published in:

Medical Imaging, IEEE Transactions on  (Volume:15 ,  Issue: 4 )