Cart (Loading....) | Create Account
Close category search window
 

An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sanchez, J.R. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL ; Oelze, M.

A method for improving the contrast resolution of B-mode images is proposed by combining the speckle-reduction technique of frequency compounding (FC) and the coded-excitation and pulse-compression technique called resolution enhancement compression (REC). FC suppresses speckle but at the expense of a reduction in axial resolution. Using REC, the axial resolution and bandwidth of the imaging system was doubled. Therefore, by combining REC with FC (REC-FC), the tradeoff between axial resolution and contrast enhancement was extended significantly. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66) having a center frequency of 2.25 MHz and a -3-dB bandwidth of 50%. Simulations and measurements of hyperechoic (+6 dB) tissue-mimicking targets were imaged. Four FC cases were evaluated: full-, half-, third-, and fourth-width of the true impulse response bandwidth. The image quality metrics used to compare REC-FC to conventional pulsing (CP) and CP-FC were contrast-to-noise ratio (CNR), speckle signal-to- noise ratio, histogram pixel intensity, and lesion signal-to-noise ratio. Increases in CNR of 121%, 231%, 302%, and 391% were obtained in experiments when comparing REC-FC for the full-, half-, third-, and fourth-width cases to CP. Furthermore, smaller increases in CNR of 112%, 233%, and 309% were obtained in experiments when comparing CP-FC for the half-, third-, and fourth-width cases to CP. Improved lesion detectability was observed by using REC-FC.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.