By Topic

Nozzle extraction geometry of a liquid metal atomizer optimized by computer simulation of electric fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cvetkovic, S.R. ; Dept. of Comput. Sci., Sheffield Univ., UK ; Balachandran, W. ; Kleveland, B. ; Arnold, P.G.
more authors

Experimental measurements are compared with results obtained using a dedicated computer program for finite element modeling of electric fields in the vicinity of a liquid metal atomizer nozzle/tip. Good agreement between the experiment and the computer model has been achieved for two different nozzle geometries (Taylor cone and rounded tip), while paying particular attention to accuracy of the numerical solution near the tip (for equipotentials as well as derived values of field strength). In addition, the potential distribution has been calculated for several different positions of extractor voltage observed for each case. Finally, the assessment of suitability of the computer technique for qualitative consideration of the atomization process itself is presented

Published in:

Industry Applications, IEEE Transactions on  (Volume:32 ,  Issue: 4 )