By Topic

The Forecasting of Rockburst in Deep-buried Tunnel with Adaptive Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng Xuan ; Res. Center of Tunneling & Underground Eng., Beijing Jiaotong Univ., Beijing, China ; Bu Xuhui

Taking into account internal and exterior factors of rockburst, a model using BP neural network is proposed, in which the in-situ stress, the compressive strength, the tensile strength and the elastic energy index of the cavern are chosen as criteria indexes. Some representative engineering projects at home and aboard are collected as learning and training samples, so as to improve the extensive ability of neural network, and Levenberg-Marquardt algorithm is applied to achieve better performance during the training process. The instances indicate that the evaluated results agree well with the practical records, which shows the model is effective in prediction of rockburst.

Published in:

Industrial and Information Systems, 2009. IIS '09. International Conference on

Date of Conference:

24-25 April 2009