By Topic

Limitations in 10 Gb/s WDM optical-fiber transmission when using a variety of fiber types to manage dispersion and nonlinearities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zou, X.Y. ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; Hayee, M.I. ; Hwang, S.-M. ; Willner, A.E.

We analyze the system limitations of WDM transmission when using various types of optical fiber to manage dispersion and nonlinearities. In our model, from two to eight 10 Gb/s WDM channels are transmitted through a cascade of EDFA's experiencing dispersion, stimulated Raman scattering, and self- and cross-phase modulation. The fiber types modeled include: conventional single-mode fiber, dispersion shifted fiber, and dispersion-compensating fiber. These fibers have different dispersion spectral profiles and are combined to manage dispersion to produce a total zero dispersion for a certain fiber span while eliminating four-wave mixing. We find that a system using dispersion-shifted fiber and conventional single-mode fiber exhibits the best performance, with the combination of dispersion and cross-phase modulation as the dominant effects. Furthermore, conventional single-mode fiber combined with dispersion-compensating fiber system exhibits the worst performance, with the combination of dispersion and self-phase modulation as the dominant effects

Published in:

Lightwave Technology, Journal of  (Volume:14 ,  Issue: 6 )