By Topic

Methods for crosstalk measurement and reduction in dense WDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We propose a scheme for the monitoring and reduction of crosstalk arising from the limited stop-band rejection of optical bandpass filters in dense WDM systems. The optical carrier at each wavelength is modulated with a subcarrier tone unique to that wavelength. The level of crosstalk from a given channel can be determined by measuring the power of the corresponding tone. Crosstalk from other channels can be cancelled in a linear fashion by weighting and summing the photocurrents of the desired channel and several adjacent interfering channels. Alternatively, in nonlinear crosstalk cancellation, decisions are made on the interfering signals, and these decision are weighted and summed with the photocurrent of the desired channel. For example, assuming an optical filter having a Gaussian passband, the channel density can be increased from 20 to 30%, depending on the number of adjacent channels detected. The signal-to-interference ratio can be increased by 10-20 dB and the system can achieve a BER<10-9 under conditions where, without interference cancellation, the signal-to-interference ratio would be less then 10 dB

Published in:

Lightwave Technology, Journal of  (Volume:14 ,  Issue: 6 )