By Topic

Wavelength conversion technologies for WDM network applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yoo, S.J.B. ; Bellcore, Red Bank, NJ, USA

WDM networks make a very effective utilization of the fiber bandwidth and offer flexible interconnections based on wavelength routing. In high capacity, dynamic WDM networks, blocking due to wavelength contention can he reduced by wavelength conversion. Wavelength conversion addresses a number of key issues in WDM networks including transparency, interoperability, and network capacity. Strictly transparent networks offer seamless interconnections with full reconfigurability and interoperability. Wavelength conversion may be the first obstacle in realizing a transparent WDM network. Among numerous wavelength conversion techniques reported to date, only a few techniques offer strict transparency. Optoelectronic conversion (O/E-E/O) techniques achieve limited transparency, yet their mature technologies allow deployment in the near future. The majority of all-optical wavelength conversion techniques also offer limited transparency but they have a potential advantage over the optoelectronic counterpart in realizing lower packaging costs and crosstalk when multiple wavelength array configurations are considered. Wavelength conversion by difference-frequency generation offers a full range of transparency while adding no excess noise to the signal. Recent experiments showed promising results including a spectral inversion and a 90 nm conversion bandwidth. This paper reviews various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent networks

Published in:

Lightwave Technology, Journal of  (Volume:14 ,  Issue: 6 )