By Topic

GATTO: a genetic algorithm for automatic test pattern generation for large synchronous sequential circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Corno, F. ; Dipartimento di Autom. e Inf., Politecnico di Torino, Italy ; Prinetto, P. ; Rebaudengo, M. ; Sonza Reorda, M.

This paper deals with automated test pattern generation for large synchronous sequential circuits and describes an approach based on genetic algorithms. A prototype system named GATTO is used to assess the effectiveness of the approach in terms of result quality and CPU time requirements. An account is also given of a distributed version of the same algorithm, named GATTO*. Being based on the PVM library, it runs on any network of workstations and is able to either reduce the required time, or improve the result quality with respect to the monoprocessor version. In the latter case, in terms of Fault Coverage, the results are the best ones reported in the literature for most of the largest standard benchmark circuits. The flexibility of GATTO enables users to easily tradeoff fault coverage and CPU time to suit their needs

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:15 ,  Issue: 8 )