By Topic

Solving the net matching problem in high-performance chip design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Carragher, R.J. ; Fujitsu Labs. Inc., Santa Clara, CA, USA ; Chung-Kuan Cheng ; Xiong, X.-M. ; Fujita, M.
more authors

In high-performance chip design, the problem of net matching is often critical for achieving correct circuit performance. We adopt a conservative design, to route all matched nets with identical topologies and equal wire lengths to achieve zero skew. The problem is formulated as a variant of the D-dimensional Steiner tree problem. We propose a two-stage solution. The first stage uses an iterative improvement strategy to generate the Steiner tree topology for all the nets. The second stage places the nodes using one of two methods. The first approach expresses the optimal Steiner node positions as a linear programming solution, with average computational complexity O(n2 m2), where n is the number of nets and m is the number of pins. Improved efficiency is achieved under the other approach by transforming the Manhattan metric to an l norm using a 45° rotation of the solution space. The norm is then approximated by either an lλ norm, for suitably large values of λ, or an exponential “penalty” function. The solution space in both approaches becomes strictly convex, allowing us to apply a greedy approach which converges to an optimal solution with great efficiency, leading to a dramatic speed-up versus the linear programming approach

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:15 ,  Issue: 8 )