Cart (Loading....) | Create Account
Close category search window
 

A model for the saturation of the hydromagnetic Rayleigh–Taylor instability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roderick, N.F. ; Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 ; Hussey, T.W.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.334137 

The saturation of the hydromagnetic Rayleigh–Taylor instability is caused by the reduction of driving current in the bubble region between the spikes formed as the instability develops. For short wavelengths linear magnetic field diffusion provides the necessary smoothing of the magnetic field to reduce the driving force. For wavelengths longer than the magnetic field diffusion length, the current is shorted through material which expands into the bubble region. This initially low density accumulates in the bubble and eventually provides a source of sufficiently high conductivity plasma which reduces the magnetic field penetration to the front of the bubble. Simple analytic models have been developed to verify and and quantify these predictions. These models have been compared with two‐dimensional magnetohydrodynamic calculations for imploding plasma shells and give good agreement with these more detailed simulations.

Published in:

Journal of Applied Physics  (Volume:56 ,  Issue: 5 )

Date of Publication:

Sep 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.