By Topic

Evaluation of the probability of dynamic failure and processor utilization for real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Woodbury, M.H. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Shin, K.G.

It is shown how to determine closed-form expressions for task scheduling delay and active task time distributions for any real-time system application, given a scheduling policy and task execution time distributions. The active task time denotes the total time a task is executing or waiting to be executed, including scheduling delays and resource contention delays. The distributions are used to determine the probability of dynamic failure and processor utilization, where the probability of dynamic failure is the probability that any task will not complete before its deadline. The opposing effects of decreasing the probability of dynamic failure and increasing utilization are also addressed. The analysis first addresses workloads where all tasks are periodic, i.e., they are repetitively triggered at constant frequencies. It is then extended to include the arrival of asynchronously triggered tasks. The effects of asynchronous tasks on the probability of dynamic failure and utilization are addressed

Published in:

Real-Time Systems Symposium, 1988., Proceedings.

Date of Conference:

6-8 Dec 1988