By Topic

Conductivity behavior in polycrystalline semiconductor thin film transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.330583 

CdSe thin film transistor (TFT) structures which have been ion implanted with 50 keV 52Cr, 50 keV 27Al, or 15 keV 11B have a very steeply rising conductivity above some threshold dose and exhibit modulated transistor characteristics over certain ranges of implant dose, even though there is no thermal annealing during or after ion implantation. These results are interpreted using a model based on grain boundary trapping theory. The dependence of leakage current on implant dose, and of drain current (at a fixed dose) on gate voltage are described very well by this model, when the drain voltage is very small. Using this simple model, the important parameters of the polycrystalline CdSe film, namely the trap density per unit area in the grain boundary, the donor density, grain size, and electron mobility can be deduced. The effect of thermal annealing on implanted and unimplanted CdSe TFT’s has also been studied and the model appears to give a general description of the conductivity behavior in polycrystalline semiconductor TFT’s. This is illustrated by applying the model to devices fabricated by other groups from polycrystalline CdSe, poly‐Si and laser‐annealed poly‐Si semiconductor layers.

Published in:

Journal of Applied Physics  (Volume:53 ,  Issue: 2 )