By Topic

Adaptive two-stage equalisation and FEXT cancellation architecture for 10GBASE-T system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. -R. Chien ; Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan ; H. -W. Tsao ; W. -L. Mao

For 10GBASE-T systems, variation in a multiple-input-multiple-output (MIMO) channel degrades the decision-point signal-to-noise ratio (DP-SNR) owing to imperfect pre-equalisation in the Tomlinson-Harashima precoding (THP) at the transmitter sides and catastrophic error propagation in far-end crosstalk (FEXT) cancellation at the receiver sides. Moreover, by using fixed THP coefficients during data transmission, as specified in the 10GBASE-T standard, and the non-linearity of THP pose challenges in the design of adaptive receivers. The authors propose an adaptive two-stage equalisation and FEXT cancellation (TS-EFC) architecture without updating the THP coefficients to combat channel variation at both the transmitter and receiver sides. In the first stage, we propose a new non-decision-directed FEXT canceller at the transmitter side using a joint training architecture to avoid error propagation. In the second stage, we devise an adaptive MIMO equaliser together with a novel pre-processing unit at the receiver side to combat channel variation. The pre-processing unit can eliminate the non-linearity issue by estimating both effective data sequences and precoded channel inputs. In addition, we develop a block least mean square algorithm that exploits the properties of two-dimensional modulated symbols for updating coefficients of the adaptive MIMO equaliser. Simulation results show that our TS-EFC architecture is robust against channel variation and significantly improves the DP-SNR. It eliminates the error propagation and also achieves faster convergence rates during the adaptation process.

Published in:

IET Communications  (Volume:3 ,  Issue: 7 )