By Topic

Real-Time Estimation of Power System Frequency Using Nonlinear Least Squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chudamani, R. ; Dept. of Electr. Eng., Indian Inst. of Technol., Chennai ; Vasudevan, K. ; Ramalingam, C.S.

This paper presents a nonlinear least squares method for measuring the power system frequency, wherein the voltage at the measurement point is modeled by using the Fourier series. The estimation of the fundamental frequency is a nonlinear problem in this formulation and is solved by performing a 1-D search over the range of allowed frequency variation. The voltage signal is used for frequency estimation because it is typically less distorted than the line current, resulting in computational efficiency. The robustness of this algorithm with respect to change in various parameters is studied through simulation and the results are validated by hardware implementation using a Virtex IV field-programmable gate array. An application of this algorithm to a shunt active power filter is also presented.

Published in:

Power Delivery, IEEE Transactions on  (Volume:24 ,  Issue: 3 )