Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Noise Reduction Algorithms in a Generalized Transform Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Benesty, J. ; INRS-EMT, Univ. of Quebec, Montreal, QC ; Jingdong Chen ; Huang, Y.A.

Noise reduction for speech applications is often formulated as a digital filtering problem, where the clean speech estimate is obtained by passing the noisy speech through a linear filter/transform. With such a formulation, the core issue of noise reduction becomes how to design an optimal filter (based on the statistics of the speech and noise signals) that can significantly suppress noise without introducing perceptually noticeable speech distortion. The optimal filters can be designed either in the time or in a transform domain. The advantage of working in a transform space is that, if the transform is selected properly, the speech and noise signals may be better separated in that space, thereby enabling better filter estimation and noise reduction performance. Although many different transforms exist, most efforts in the field of noise reduction have been focused only on the Fourier and Karhunen-Loeve transforms. Even with these two, no formal study has been carried out to investigate which transform can outperform the other. In this paper, we reformulate the noise reduction problem into a more generalized transform domain. We will show some of the advantages of working in this generalized domain, such as 1) different transforms can be used to replace each other without any requirement to change the algorithm (optimal filter) formulation, and 2) it is easier to fairly compare different transforms for their noise reduction performance. We will also address how to design different optimal and suboptimal filters in such a generalized transform domain.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 6 )