By Topic

Adaptive Window Control (AWC) Technique for Hysteresis DC–DC Buck Converters With Improved Light and Heavy Load Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han-Hsiang Huang ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chi-Lin Chen ; Ke-Horng Chen

This paper presents a new adaptive window control (AWC) technique to adjust the hysteresis window to reduce the output ripple at heavy loads and keep the switching frequency higher than the acoustic frequency at light loads. Therefore, the driving capability and the power conversion efficiency of the hysteresis converter are improved at heavy loads. Besides, a new class AB current sensing circuit is also proposed to provide fast and accurate current sensing signal for achieving fast hysteresis window adjustment. Experimental results show that the proposed AWC technique not only reduces the output ripple smaller than 12 mV when load current is 800 mA to improve the power conversion efficiency but also keeps the switching frequency higher than acoustic frequency at light loads to avoid undesired noise.

Published in:

IEEE Transactions on Power Electronics  (Volume:24 ,  Issue: 6 )