By Topic

Robust Low Oxygen Content Cu Alloy for Scaled-Down ULSI Interconnects Based on Metallurgical Thermodynamic Principles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Hayashi, Y. ; LSI Fundamental Res. Lab., NEC Electron. Corp., Sagamihara, Japan ; Abe, M. ; Tada, M. ; Narihiro, M.
more authors

A low oxygen content (LOC) CuAl alloy with no barrier metal (Ta) oxidation was obtained using an oxygen absorption process based on metallurgical thermodynamic principles. LOC CuAl dual damascene interconnects (DDIs) were successfully implemented into 45-nm-node LSIs with 140-nm-pitched lines and 70-nm-diameter (phi) vias. An oxygen absorber of very thin Al film, which was deposited on an electrochemically deposited (ECD) Cu film, captured the oxygen atoms in the ECD Cu due to its larger negative change in the standard Gibbs-free energy of oxidation than in the Cu and the barrier (Ta), preventing the Ta barrier from oxidizing during high-temperature annealing. The high-quality Cu/barrier interface in the LOC CuAl DDIs remarkably improved the via reliability against stress-induced voiding and electromigration. No reliability degradation of the 70-nm-phi vias was observed in the 45-nm-node LOC CuAl DDIs, while keeping the scalability from the 65-nm-node generation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 8 )