By Topic

Spatial Filtering for Wall-Clutter Mitigation in Through-the-Wall Radar Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yeo-Sun Yoon ; Radar Imaging Lab., Villanova Univ., Villanova, PA, USA ; Amin, M.G.

Radio-frequency imaging of targets behind walls is of value in several civilian and defense applications. Wall reflections are often stronger than target reflections, and they tend to persist over a long duration of time. Therefore, weak and close by targets behind walls become obscured and invisible in the image. In this paper, we apply spatial filters across the antenna array to remove, or at least significantly mitigate, the spatial zero-frequency and low-frequency components which correspond to wall reflections. Unmasking the behind-the-wall targets via the application of spatial filters recognizes the fact that the wall electromagnetic (EM) responses do not significantly differ when viewed by the different antennas along the axis of a real or synthesized array aperture which is parallel to the wall. The proposed approach is tested with experimental data using solid wall, multilayered wall, and cinder block wall. It is shown that the wall reflections can be effectively reduced by spatial preprocessing prior to beamforming, producing similar imaging results to those achieved when a background scene without the target is available.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 9 )