By Topic

An Edge-Weighted Centroidal Voronoi Tessellation Model for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Wang ; Dept. of Sci. Comput., Florida State Univ., Tallahassee, FL, USA ; Lili Ju ; Xiaoqiang Wang

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations whose generators are also the centers of mass (centroids) of the Voronoi regions with respect to a given density function and CVT-based methodologies have been proven to be very useful in many diverse applications in science and engineering. In the context of image processing and its simplest form, CVT-based algorithms reduce to the well-known k -means clustering and are easy to implement. In this paper, we develop an edge-weighted centroidal Voronoi tessellation (EWCVT) model for image segmentation and propose some efficient algorithms for its construction. Our EWCVT model can overcome some deficiencies possessed by the basic CVT model; in particular, the new model appropriately combines the image intensity information together with the length of cluster boundaries, and can handle very sophisticated situations. We demonstrate through extensive examples the efficiency, effectiveness, robustness, and flexibility of the proposed method.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 8 )