By Topic

Double-Evaporator Thermosiphon for Cooling 100 kWh Class Superconductor Flywheel Energy Storage System Bearings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Seyong Jung ; Supercond. & Applic. Group, Korea Electr. Power Res. Inst., Daejeon, South Korea ; Jisung Lee ; Byungjun Park ; Sangkwon Jeong
more authors

This paper presents an idea for a thermosiphon that uniquely implements two integrated evaporators to cool two HTS (High Temperature Superconductor) bulk sets in different locations, simultaneously. A so-called double-evaporator thermosiphon was designed, fabricated and tested using nitrogen as the working fluid under sub-atmospheric pressure conditions. The operating target temperature was approximately 65 K. To confirm the feasibility of the double-evaporator thermosiphon, experiments during the cool down process and steady state operation were extensively conducted on the double-evaporator thermosiphon (Ltot = 1075 mm, do = 160 mm). The double-evaporator thermosiphon worked successfully at steady state operation. The results showed that it had a maximum total temperature difference between the condenser and the evaporator of 1.3 K and a temperature difference between the two evaporators of 0.6 K at a heat flow of 87 W. This thermosiphon was designed for actual application to a 100 kWh SFES (Superconducting Flywheel Energy Storage) system. The potential impact of superior heat transfer characteristics of the double-evaporator thermosiphon is discussed in the paper.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 3 )