Cart (Loading....) | Create Account
Close category search window

Design Study of the Multipole Corrector Magnet for SIS 100

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sugita, K. ; GSI, Gesellshaft fur Schweionenforschung mbH, Darmstadt, Germany ; Fischer, E. ; Khodzhibagiyan, H. ; Muller, H.
more authors

A design study of the multipole corrector magnet for the SIS 100 is in progress. This magnet, which has to integrate functions of a quadrupole, a sextupole and an octupole magnet, contains nested three windings to save longitudinal space in the accelerator ring. Although the windings are made from a Nuclotron type cable as for the SIS 100 main dipole magnet, insulated superconducting wires which are connected in series to allow low current operation, are used for the cable. In this paper, we describe the design principle and mechanical structure of the magnet and present computation results.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 3 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.