By Topic

LOPASS: A Low-Power Architectural Synthesis System for FPGAs With Interconnect Estimation and Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deming Chen ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Cong, J. ; Yiping Fan ; Lu Wan

In this paper, we present a low-power architectural synthesis system (LOPASS) for field-programmable gate-array (FPGA) designs with interconnect power estimation and optimization. LOPASS includes three major components: 1) a flexible high-level power estimator for FPGAs considering the power consumption of various FPGA logic components and interconnects; 2) a simulated-annealing optimization engine that carries out resource selection and allocation, scheduling, functional unit binding, register binding, and interconnection estimation simultaneously to reduce power effectively; and 3) a k-cofamily-based register binding algorithm and an efficient port assignment algorithm that reduce interconnections in the data path through multiplexer optimization. The experimental results show that LOPASS produces promising results on latency optimization compared to an academic high-level synthesis tool SPARK. Compared to an early commercial high-level synthesis tool, namely, Synopsys Behavioral Compiler, LOPASS is 61.6% better on power consumption and 10.6% better on clock period on average. Compared to a current commercial tool, namely, Impulse C, LOPASS is 31.1% better on power reduction with an 11.8% penalty on clock period.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )