By Topic

A 2.4 GHz Fully Integrated Linear CMOS Power Amplifier With Discrete Power Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kyu Hwan An ; Georgia Electron. Design Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Dong Ho Lee ; Ockgoo Lee ; Hyungwook Kim
more authors

A fully integrated 2.4 GHz CMOS power amplifier (PA) in a standard 0.18 mum CMOS process is presented. Using a parallel-combining transformer (PCT) and gate bias adaptation, a discrete power control of the PA is achieved for enhancing the efficiency at power back-off. With a 3.3 V power supply, the PA has a peak drain efficiency of 33% at 31 dBm peak output power. By applying discrete power control, a reduction of 650 mA in current consumption can be achieved over the low output power range while satisfying the EVM requirements of WLAN 802.11g and WiMAX 802.16e signals.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:19 ,  Issue: 7 )