By Topic

Transmission and reflection of electromagnetic waves by an obstacle inside a waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bostrom, Anders ; Institute of Theoretical Physics, S‐412 96 Göteborg, Sweden ; Olsson, Peter

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We consider the transmission and reflection of electromagnetic waves by an obstacle inside a waveguide. The method employed is an adaptation of the null‐field approach (T‐matrix method). The geometry is more or less arbitrary, but only for a waveguide with constant cross section can we obtain the scattered field in a not too formal way. For a circular cross section we derive comparatively explicit expressions for the transmission and reflection coefficients of the obstacle, and we give numerical results for spherical and spheroidal obstacles in rotationally symmetric geometries. As an important part of the theory, we have derived some apparently new transformations between the cylindrical and spherical vector waves and also expansions of the free‐space Green’s dyadic in cylindrical vector waves.

Published in:

Journal of Applied Physics  (Volume:52 ,  Issue: 3 )