Cart (Loading....) | Create Account
Close category search window

On minimizing the number of test points needed to achieve complete robust path delay fault testability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Uppaluri, P. ; Avant Corp., Research Triangle Park, NC, USA ; Sparmann, U. ; Pomeranz, I.

Recently, Pomeranz and Reddy (1994), presented a test point insertion method to improve path delay fault testability in large combinational circuits. A test application scheme was developed that allows test points to be utilized as primary inputs and primary outputs during testing. The placement of test points was guided by the number of paths and was aimed at reducing this number. Indirectly, this approach achieved complete robust path delay fault testability in very low computation times. In this paper, we use their test application scheme, however, we use more exact measures for guiding test point insertion like test generation and RD fault identification. Thus, we reduce the number of test points needed to achieve complete testability by ensuring that test points are inserted only on paths associated with path delay faults that are necessary to be tested and that are not robustly testable. Experimental results show that an average reduction of about 70% in the number of test points over the approach of Pomeranz and Reddy can be obtained

Published in:

VLSI Test Symposium, 1996., Proceedings of 14th

Date of Conference:

28 Apr-1 May 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.