By Topic

An MCM/IC timing-driven placement algorithm featuring explicit design space exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Esbensen, H. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Euh, E.S.

A genetic algorithm for building-block placement of MCMs and ICs is presented which simultaneously minimizes layout area and an Elmore-based estimate of the maximum path delay while trying to meet a target aspect ratio. Explicit design space exploration is performed by using a vector-valued, S-dimensional cost function and searching for a set of distinct solutions representing the best tradeoffs of the cost dimensions. Designers can then choose from the output set of feasible solutions. In contrast to existing approaches such as simulated annealing, neither weights nor bounds are needed, thereby eliminating the inherent practical problems of specifying these quantities. Promising results are obtained for various placement problems, including a real-world MCM design

Published in:

Multi-Chip Module Conference, 1996. MCMC-96, Proceedings., 1996 IEEE

Date of Conference:

6-7 Feb 1996