By Topic

Proton irradiation of various resistivity silicon detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bates, S.J. ; ECP Div., CERN, Geneva, Switzerland ; Dezillie, B. ; Furetta, C. ; Glaser, M.
more authors

Future high energy physics experiments at CERN's Large Hadron Collider will use high precision silicon detectors for tracking purposes. The hadronic component of the radiation received threatens the lifetime of these detectors and it is vital to choose the silicon starting material to maximise the performance and lifetime. Ion-implanted silicon detectors with various initial resistivities and germanium concentrations have been irradiated with high energy protons up to a fluence of 1014 cm-2. The change in leakage current and full depletion voltage have been studied both as a function of fluence and of time after irradiation. Measurements were made up to 100 days post-irradiation at room temperature and then using heating techniques to accelerate processes up to the equivalent of over 10 years at room temperature. The leakage-current damage constant is shown to be independent of the starting material while the conduction type inversion point and the long-term annealing of the depletion voltage are sensitive to the initial resistivity and impurity concentrations

Published in:

Nuclear Science, IEEE Transactions on  (Volume:43 ,  Issue: 3 )