Cart (Loading....) | Create Account
Close category search window

Projection learning for self-organizing neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Potlapalli, H. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Luo, R.C.

A new learning scheme, called projection learning (PL), for self-organizing neural networks is presented. By iteratively subtracting out the projection of the “twinning” neuron onto the null space of the input vector, the neuron is made more similar to the input. By subtracting the projection onto the null space as opposed to making the weight vector directly aligned to the input, we attempt to reduce the bias of the weight vectors. This reduced bias will improve the generalizing abilities of the network. Such a feature is important in problems where the in-class variance is very high, such as, traffic sign recognition problems. Comparisons of PL with standard Kohonen learning indicate that projection learning is faster. Projection learning is implemented on a new self-organizing neural network model called the reconfigurable neural network (RNN). The RNN is designed to incorporate new patterns online without retraining the network. The RNN is used to recognize traffic signs for a mobile robot navigation system

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:43 ,  Issue: 4 )

Date of Publication:

Aug 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.