We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Plasma guiding and wakefield generation for second-generation experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Leemans, W.P. ; Center for Beam Phys., Lawrence Berkeley Lab., CA, USA ; Siders, C.W. ; Esarey, E. ; Andreev, N.E.
more authors

A design study has been carried out for a second-generation experiment on laser guiding and wakefield excitation in a channel. From simple scaling laws for the wakefield amplitude, dephasing length, the relativistic group velocity factor γg, and energy gain with and without guiding, we find that the parameter regime for a compact single stage GeV accelerator favors laser systems producing short pulses (10 fs⩽τ⩽100 fs), each containing an energy on the order of 100 mJ to a few J's. Taking the dephasing length as the maximum acceleration distance, plasma channels with lengths of 1-10 cm and densities of 1017-1019 cm-3 need to be produced; whereas the design study has been primarily concerned with diffraction and channel guiding, dephasing and depletion limits, and linear wakefield theory, aspects of the effect of the plasma wave on the evolution of the laser pulse are discussed. We find that transverse and longitudinal pulse distortions could indeed affect the generated plasma wave phase velocity and amplitude, and hence may limit the achievable energy gains over the one-dimensional (1-D) linear estimates. Some issues for experiments on prototype small accelerators (100 MeV-1 GeV, cm scale) are also discussed

Published in:

Plasma Science, IEEE Transactions on  (Volume:24 ,  Issue: 2 )