By Topic

Design and performance analysis of load-distributing fault-tolerant network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang Bang Choi ; Dept. of Electron. Eng., Inha Univ., Inchon, South Korea ; Somani, A.K.

We propose a general design technique for high-performance fault-tolerant networks in multiprocessor systems. The proposed technique called extra link multistage interconnection network (ELMIN) can distribute the load evenly and tolerate faults by providing maximal independent paths at the expense of some additional hardware (extra links), which is much smaller than most of the networks proposed earlier. In this paper, the technique is applied to some specific networks, i.e., the CIN (cube interconnection network) and the d-dilated CIN, to show how to maximize the number of redundant paths. The routing algorithms for the ELMIN have the same simplicity as that of the original MIN. We analyze the performance of the proposed networks and also simulate them along with several others under the buffered and unbuffered packet switching environment. Both analysis and simulation show the high performance of the proposed networks without regard to the presence of faults

Published in:

Computers, IEEE Transactions on  (Volume:45 ,  Issue: 5 )