Cart (Loading....) | Create Account
Close category search window

Effects of Point Defects on Elastic Precursor Decay in LiF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Asay, J.R. ; Sandia Laboratories, Albuquerque, New Mexico 87115 ; Fowles, G.R. ; Durall, G.E. ; Miles, M.H.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Experimental data for shock propagation along a <100> direction in single-crystal LiF show that elastic precursor decay is critically dependent on the origin of the sample. The most obvious differences among samples used are in their concentrations of impurities. It is suggested that divalent cation impurities are responsible for variations in precursor decay, and this is supported by results from a set of samples irradiated with γ rays to produce F centers. For the observed range of defect concentrations, quasistatic yield stresses varied monotonically with concentration from 0.02 kbar for pure crystals to 1.0 kbar for the hardest material studied. In the shock loading experiments both hard and soft crystals showed an initial rapid decay of the precursor to near-equilibrium values of about 2 kbar for the softest crystals and about 6 kbar for the hardest. For crystals of intermediate hardness the decay was much slower. From observed effects of annealing before shocking it is inferred that dislocation mechanisms in shock differ from those believed to operate at low strain rates. Impact stress for all experiments was about 28.6 kbar and sample thicknesses ranged from 0.27 to 15.44 mm.

Published in:

Journal of Applied Physics  (Volume:43 ,  Issue: 5 )

Date of Publication:

May 1972

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.