By Topic

Design techniques for silicon compiler implementations of high-speed FIR digital filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. A. Hawley ; Broadcom Corp., Irvine, CA, USA ; B. C. Wong ; Thu-Ji Lin ; J. Laskowski
more authors

Architecture design techniques for implementing both single-rate and multirate high throughput finite impulse response (FIR) digital filters are explored, with an emphasis on those which are applicable to automated integrated circuit layout techniques. Various parallel architectures are examined based on the criteria of achievable throughput versus hardware complexity. Well-known techniques for reduced complexity and computation time are briefly summarized, followed by the introduction of several new techniques which offer further gains in both throughput and circuitry reduction. An architecture for mirror-symmetric polyphase filter banks is derived which exploits the coefficient symmetry between multiple filters to reduce hardware. Finally, the evolution of a silicon compiler which utilizes all of these techniques is presented, and results are given for compiled filters along with comparisons to other compiled and custom FIR filter chips

Published in:

IEEE Journal of Solid-State Circuits  (Volume:31 ,  Issue: 5 )