By Topic

Dislocation Studies in Bi2Te3 by Etch‐Pit Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sagar, A. ; Westinghouse Research Laboratories, Pittsburgh, Pennsylvania ; Faust, J.W.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1709362 

Dislocation studies in Bi2Te3 were made by etch‐pit technique. All work was done on c planes. The etch marks the dislocations in the c plane by producing etch grooves, and marks the sites of emergence of dislocations from the surface with pyramidal etch pits. Evidence was found for the presence of networks of dislocations lying predominantly in the c plane. Experimental evidence was also found for bending of the dislocations within the crystal being responsible for different size pyramidal etch pits, and flat bottom pits observed on the etched surfaces. The same mechanism was found to be responsible for bringing out new etch pits on longer etching. The slip traces on the c plane were found by controlled surface‐damage studies to be parallel to the binary axes.

Published in:

Journal of Applied Physics  (Volume:38 ,  Issue: 2 )